If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15w-10w^2=0
a = -10; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-10)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-10}=\frac{-30}{-20} =1+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-10}=\frac{0}{-20} =0 $
| 6x-7+8x=9 | | -5u-u+5=-8u+19 | | 19h+-11h-20=-4 | | 2(m+-4)-(-1)=3 | | 5x-9x-7=-4x+3-7 | | 2=2x+6-4x | | 37=3v-17 | | 26=2n-10 | | d-80/(-1)=-10 | | =3(m+8)+2(m-4) | | 8z+18=7z+3 | | 8(2m+6m)=6m+9 | | (3x+4)-7(x-9)=1 | | 5/2x+1/2x=22(1/2)+7/2x | | 6c+13=-29 | | (5x+1)=(3x+9) | | 8a+12=100 | | 9x-22+9x-22=95 | | 16-3a=-5a+3 | | -3(3+t)-8=5t | | 14+-1/6x=7 | | 2x+5x-3x=0 | | 3b-2b-1=18 | | 4+3x=5x+216 | | 3(c-2)=36 | | (5x-4)=3x-10 | | (1-b)-(6-b)=6 | | -8j-11j=-15 | | 80=6a+2 | | 6w-4+2w=68 | | 5x-4x-1=9 | | 1.2x(x+7)-14=0 |